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The most notable feature of the magnetohydrodynamic flow at large distances 
from a three-dimensional body is the formation of two wakes, within which 
vorticity and electric current are confined. In  this paper results are obtained 
for the effective diffusivity and the relation between current and vorticity in 
each wake, for the balance between the strengths of the disturbances in the wakes 
and in the irrotational current-free flow outside, and for the lift and drag forces 
acting on the body. The final answers take the form of remarkably simple 
extensions of the corresponding formulae for non-conducting flow. In  spite of 
the extra wake and the presence of a magnetic as well as a velocity field, the flow 
perturbation at  large distances still has only three degrees of- freedom. 

1. Introduction 
For the flow of a viscous conducting fluid past a body in a magnetic field, it 

has been recognized for some time that there are two wakes, in general, instead 
of one as for a non-conducting fluid. Vorticity and electric current are zero out- 
side the wakes, which lie in the Alfvh directions, i.e. those directions in which 
are to be found disturbances which originate a t  the body and move, relative to 
the fluid, along the magnetic field lines with the Alfvkn speed. The wakes are 
indeed often referred to as Alfv6n waves, particularly when the effects of dif- 
fusion are being ignored. This paper is devoted to a detailed study of these 
wakes, for steady three-dimensional magnetohydrodynamic flow. 

As in the equivalent non-conducting problem, the solutions obtained are 
valid only at sufficiently large distances, greater than ro say, from the body. The 
distance ro must be such that it is legitimate to neglect squares of disturbances 
to the stream values of the quantities concerned, and also such that the Reynolds 
number and the magnetic Reynolds number based on ro shall be large. (It is not 
necessary that their values based on a typical body dimension shall be large.) 
Since both viscous and magnetic diffusivity are included in t h c  analysis there 
can be no doubt that the disturbances are small at  large distances, even in the 
wake regions. 

The whole analysis is an extension of that given by Hasimoto (1960) for two- 
dimensional flow. Hasimoto only claimed that his results applied in three special 
cases: (1) with the magnetic and velocity fields alined at large distances; (2) with 
the magnetic and viscous diffusivities equal; and (3) for Stokes flow. Case (1) 
is also a special case in our analysis here. However, our main concern is with the 
general case, with the fields not alined, and here we show that the restriction (2) 
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is unnecessary. As for (3), the Stokes approximation ceases to be valid at  large 
distances whatever the Reynolds number (as for non-conducting flow), and we 
shall not discuss this case here. 

An interesting fact which emerges during the investigation is that for un- 
disturbed velocity and magnetic fields inclined at an angle a, the details of the 
flow in the wakes in the limit as a -+ 0 is not the same as for alined fields, with 
a = 0. A physical explanation is that for a + 0 the two wakes develop indepen- 
dently, while for a = 0 Alfvkn disturbances can propagate from a point in a 
wake with either of the two Alfvkn velocities and still remain within the wake. 
This suggests that caution is needed when making deductions from solutions 
for alined fields in respect to what occurs when the fields are not alined. 

This same point has arisen in analyses which assume the fluid to be inviscid 
and perfectly conducting. Thus for the flow past a thin aerofoil, Stewartson 
(1961) has shown that the results of Sears & Resler (1959) for a = 0 are not 
approached in the limit as a -+ 0. In  addition, Stewartson (1960) has argued that 
Sears & Resler’s solution is not unique, on the grounds that they are not 
justified in assuming that the flow perturbations are negligible at large 
distances. The results of the present paper may help to resolve such questions, 
since disturbances in wakes must be represented by equivalent singularities 
in the corresponding perfectly conducting, inviscid flow. 

The effects of finite conductivity on the two-dimensional inviscid flow past 
a thin aerofoil with the magnetic field at right angles to the stream, the second 
configuration examined by Sears & Resler (1959), were studied briefly by them 
and in greater detail by McCune (1960). Arguing by analogy with the flow past 
a wavy wall, McCune deduced how diffusion modifies the pressure distribution 
over the aerofoil for large magnetic Reynolds numbers, and also how the current 
and vorticity are damped with increasing distance. McCune refers to the ‘depth 
of penetration ’ of the current density, which is perhaps somewhat misleading, 
since his solution for the current in each wake has a doublet strength which is 
not attenuated, in agreement with the prediction of this paper. It is true that 
diffusion causes the current density to fall off indefinitely at  large distances 
along the wake, but the flow and field perturbations outside the wake are not 
affected by the diffusion. Lary (1962) has investigated the same problem for an 
alined magnetic field, and obtained results which are applicable for sufficiently 
small values of the magnetic Reynolds number, such that the thickness of the 
magnetic boundary layer is large compared with the aerofoil’s thickness or 
centre-line displacement. 

2. Structure of the wakes 

flow of a conducting fluid of constant properties are 
The equations governing the steady three-dimensional magnetohydrodynamic 

( q . V ) q  = - ( l / ~ ) V ~ + v V ~ q + ( r u / p ) j  x H ,  (2.1) 

(2.2) 

(2.3) 

j = V x H  = a (E+ ,uqxH) ,  
V . q  = V.H = V x E  = 0,  

in M.K.S. units, where p is the pressure, q the velocity, p the density, v the 
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kinematic viscosity, p the permeability, v the conductivity, H the magnetic 
field, E the electric field and j the current. Taking the curl of (2 .2 )  and using 
(2.3) we obtain 

where 7 = (gp)-l is the magnetic diffusivity. Also (2.1) can be written as 

(2.4) 

(q .V)q-(p/p)  ( H * V ) H  = - ( l / P ) v ( P + ~ ~ ~ 2 ) + v v 2 Q .  (2 .5)  

( q . V ) H - ( H . V ) q  = rV2H, 

Let the undisturbed velocity and magnetic fields be U, = U,a and H, = Hob 
respectively, where a and b are unit vectors inclined at an angle a. (We may 
assume without loss of generality that 0 < a < in, since if H is replaced by - H 
the whole flow is unaltered.) At large distances the perturbations due to a finite 
body must be small, even in wakes, so we write 

q = U,a+v, H = H,b+h, (2.6) 

U,(a. V) h - H,(b . 8) v = qV2h, (2.7) 

U,(a. V) v - (pH,/p) (b. V) h = - (l/p) V ( p  + &H2) + vV2v. (2.8) 

and neglect squares and products of v and h. Equations (2.4) and (2.5) become 

Now take the curl of these equations. Since the vorticity o = V x v and the 
current j = V x h, we obtain 

U,(a. V) j - H,(b . 8) w = qV2j, 

U,(a. V) o - (pHo/p) (b . V) j = vV2w. 

(2.9) 

(2.10) 

qvV4w+ ( r + v )  ?J,(a.V)V2w+ U~{(a+/3~b).V}{(a-/3~b).V}w = 0, (2.11) 

where p = ,uHi/pUi is the square of the ratio of the Alfvh speed to the fluid speed 
in the undisturbed flow. This is the basic equation for the vorticity w a t  large 
distances. Exactly the same equation is obeyed by the current j. 

At very large distances all gradients are small and the lowest-order derivatives 
must predominate. These occur in the last term of (2.11), and hence the main 
disturbances are to be found only in the directions given by the unit vectors 
s,, s,, where 

s1 = (1+2/34cosa+p)-*(a+@b), s2 = (1-2P&cosa+/3)-t(a-p*b), (2.12) 

as shown in figure I .  There are thus two wakes, in these two directions. The wakes 
occur in the tracks of disturbances which leave the body and travel, relative to 
the fluid, at the Alfvbn speed (p/p)* H, parallel to the magnetic field H,, in either 
direction. We shall use suffixes 1 and 2 to denote quantities associated with the 
wakes in the directions s, and s2 respectively. 

To study the vorticity w, in the s1 wake take rectangular co-ordinates (sl, t,, n,), 
where the unit vector n, is perpendicular to S, in the plane of a and b, as shown in 
figure 1, and t, is in the direction of b x a. Thus 

t, = cosec ab x a, 

Eliminating j between (2.9) and (2.10) gives 

(2.13) 

1-3 

n, = cosec a( 1 + 2p4 cos a +/3-& { - (cos a + /?$) a + (1  + p4 cos a) b). 
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Note that t, = t, = t, say. Equation (2.11) becomes 

a 
881 

~ V V ~ W ,  - (7 + v) ~ ( l +  2 ~ 4  cos a + p)-i (1 +/I* cos a )  - - pi sin cc 

+ U 2 -  o1 = 0, (2.14) 

where now V2 = Pjas; + Pjat; + a2jan;. All derivatives are small in the wake, 
and from general wake theory we may assume that 

FIGURE 1. The location of the wakes and the co-ordinate systems used. 

If cc is not small, the major terms of (2.14) give 

a o  
(2.15) 2 UO 

T + V  
and hence v201 = -(1+2p~cosa+p)*--1, as1 

since the vorticity is zero outside the wake regions. Here V2 may be approximated 
to by a2lat; + a2jan;. We note that 

- = o -  , 
as1 a (az,)e 

which is in accord with the assumption made above. For the s2 wake all we have 
to do is to replace p* by -p&. The equation corresponding to (2.15) is therefore 

(2.16) 

These equations are of precisely the same form as that governing the wake 
in a non-conducting fluid, namely V 2 o  = (Uo/v) aojax. The spread of vorticity 
in the two wakes is therefore exactly as in a non-conducting fluid of kinematic 

+ ( r + v )  (1 _+2p~cosa+p)-k (2.17) viscosity 

The wakes from a point disturbance are paraboloidal in shape, with widths 
proportional to (V+ V)* u& 1 2 2pcos  a +p)-"k,2. 
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The relationship between the vorticity and current fields in the wakes is given 
by (2.9) or (2.10). Thus for the s1 wake the major terms in each equation are 
those involving a/&, on the left-hand side. Each equation leads to the results 

jl = -(P/P)+ 0 1 7  j, = ( P / P ) ~ w ~ .  (2.18) 

Equivalent results for the corresponding velocity and magnetic fields can be 
deduced from (2.7), and are 

hl = - (P/P)+VI, h2 = (PlPPV,. (2.19) 

It may be noted that in each wake the magnetic energy +ph2 and kinetic energy 
&pv2 per unit volume associated with the perturbed fields are equal. Equations 
(2.8) and (2.19) show that the variation ofp + +pH2 across each wake is negligible. 
This is the magnetohydrodynamic extension of the result that p has negligible 
variation across a non-conducting boundary layer or wake. 

When a = 0, so that a and b are both in the x-direction, the analysis requires 
modification. The last term in each curly bracket in (2.14) vanishes instead of 
being dominant. Equation (2.1 1) now factorizes to give 

(v2-kl;) ( V 2 - k 2 g )  w = 0,  (2.20) 

where h,, = (u0/2w ((7 + v) t- [ (a - v12 + 4 ~ ~ 1 4 1  

= z(1-P) uo{(r+~)T [ ( ~ - v ) ~ + ~ ~ v P ] * } - ~ .  (2.21) 

vzWl - kl awllax = 0, vzw, - IC, aw,/ax = 0, (2.22) 

It is readily proved that the solution of (2.20) is given by o = w1 + w2, where 

and thus there are two wakes superposed, each in the stream direction. From 
(2.21), k, is always positive, but k, is positive or negative according as /3 is less 
than or greater than unity. A negative value of k, implies that the second wake 
is in the upstream direction. Using (2.22) and (2.10) we find that 

[(a - v)2 + 4 w 3 W  wl, 27 

[(a,- v12 + 4~3141-~  vl,,. 

j , ,  = - (2vHo/uo) {(a - v) 
hl, = - PH~P,) ((a - v) 

(2.23) 

(2.24) 

This is a simple extension to three dimensions of Hasimoto’s (1960) two-dimen- 
sional result. 

It isnoteworthy that, unless 11 = v, the values given by (2.21), (2.23) and (2.24), 
for a = 0,  are quite unrelated to the limiting values as a + 0 given by (2.17), 
(2.18) and (2.19), though both wakes are downstream for P < 1, and one is 
upstream and one downstream for /3 > 1, by each approach. The discrepancy is 
no surprise in view of the step from (2.14) to (2.15), but it does indicate that 
results for alined fields (often a convenient case to treat mathematically) should 
be used with caution in predicting what happens if the fields are not perfectly 
alined. When 7 = v, so that the magnetic and viscous diffusivities are equal, 
there is complete agreement between the resulks for a = 0 and in the limit as 
a -+ 0. For alined fields with /3 = 1, both (2.17) and (2.21) indicate that a sin- 
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gular situation arises. Each gives V2w, = 0, and so w2 satisfies the equation for 
Stokes flow and not the wake equation. For this special case the whole analysis 
would have to be re-examined. 

The detailed flow in the wakes when the Reynolds number and magnetic 
Reynolds number are large can be deduced immediately from the known results 
for a non-conducting wake a t  large Reynolds number. Solutions occur of two 
distinct types : with vortex lines in rings (not necessarily circular) about the wake 
axis, associated with the drag and giving a velocity defect in the wake; and with 
vortex lines trailing along the wake, as for a lifting wing. In  the former case the 
volume flux defect in the wake is constant, and in the latter the strength of the 
equivalent vortex doublet is constant along the wake. These facts will be 
sufficient for our needs in this paper. They apply even if the flow in the wake is 
turbulent, since they are derived from over-all momentum considerations, and 
do not depend on the precise nature of the viscous stresses in the wake region. 
Furthermore, they apply whether or not the distribution of vorticity has reached 
its final similarity form. This is important, since magnetohydrodynamic wakes 
are not in general thin initially (as are the wakes behind streamlined bodies in 
non-conducting fluids), but start with the projected area of the body in the wake 
direction. In consequence, the flow perturbations may become small and the 
Reynolds number and the magnetic Reynolds number become large at distances 
far smaller than those a t  which the current and vorticity distributions approach 
their ultimate forms. 

Finally it may be noted that, for CL + 0, fluid particles travel through the wake, 
since they move with a velocity differing only slightly from Uo. Particles enter 
the wake, acquire current and vorticity, but then pass out of the wake, relin- 
quish their current and vorticity, and resume their previous unrufled career. 
This is in sharp contrast to what happens in a non-conducting fluid, where 
particles remain within the wake once they have entered it. 

3. Disturbances to the stream 
We now turn to the flow in the main body of the fluid. This will be everywhere 

free from electric current or vorticity, but will have singularities at the wakes 
and at the body. Since we are concerned only with the flow a t  large distances, 
the effect of the body can be represented by a singularity at the origin 0. 

It will be helpful to review the facts about the similar problem for a non- 
conducting fluid. The flow outside the wake then has a term as for a source of 
strength Q a t  the origin, continuity being preserved by an inflow of strength Q 
along the wake, which of course lies downstream. There is also a bound vortex 
singularity at  the origin of strength K, perpendicular to the stream Uo, and 
a trailing vortex doublet, also of strength K, along the wake. The equivalent 
horse-shoe vortex ABCD is illustrated in figure 2. If the circulation round the 
vortex is r and the vector BC is h, then K = rh. As far as the flow at large dis- 
tances is concerned, we may consider the limiting case h + 0, but K finite and 
non-zero. The lift L and drag D on the body are related to K and Q by the 
equations 

(3.1) D =pUo&, L =pUOxK. 
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Formulae equivalent to these were developed by Goldstein (1929,1931); they are 
extensions of the formulae for two-dimensional flow given by Filon (1926) and 
Taylor (1925). The latter is itself the extension to viscous flow of the Kutta- 
Joukowski theorem for inviscid fluids. As far as the over-all forces are concerned 
there are three degrees of freedom, the three components of force being pro- 
portional to Q and the two components of K (which has no component parallel 

What would we anticipate to be the equivalent situation in magnetohydro- 
dynamics ? As well as Q and K for each wake there are now also the corresponding 
magnetic quantities, the magnetic pole strength M at the origin, and the bound 
current strength C (equal to the product of the current and its length). We might 
therefore expect twelve degrees of freedom, three from the magnetic parameters 

to U0). 

B -c r A 
FIGURE 2. Representation of the bound and trailing vorticity in a wake. 

and three from the velocity parameters in each wake. However, equations (2.18) 
and (2.19) reduce the number at once to six, M being related to Q and C to K in 
each wake. We shall now show that the equations for the main flow enable us 
to obtain relations which reduce the number of independent parameters from six 
to three, the same number as for non-conducting flow. 

Outside the wakes j = o = 0 and (2.1) reduces to V ( p  + &pq2) = 0, or 

p + +pq2 = constant, (3.2) 

which is Bernoulli’s equation for the pressure in its usual non-conducting form. 

(3.3) 
Equation (2.4) becomes 

For small disturbances as in (2.6) this gives 

(q.V)H = (H.V)q. 

(Uo.V)h = (H0.V)v, 

and hence, since V x h = V x v = 0 ,  

V(Uo.h) = V(H0.v), 

and therefore, since a t  infinity h = v = 0 in most directions, 

Uo.h = H0.v. (3.4) 

This is the fundamental equation which the magnetic and velocity perturbations 
must obey in the main flow. 

All contributions to h and v arise directly or indirectly (as a consequence of 
solenoidality) from one or other of the two wakes. (It is assumed that there is 
no physical source or magnetic pole at the body. The extension of the theory of 
this paper to such cases presents no special difficulty.) We therefore write 

h = hl+h,, v = v,+v,, (3.5) 
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where, for a $: 0,  these quantities are related by (2.19). Equation (3.4) becomes 

(a+P&b).v, = (a-/3*b).v2. ( 3 4  

The first vector in each scalar product is in the direction of the appropriate wake. 
Contributions to (3.6) arise from the source and the bound vortex a t  0. Ring 

vorticity in a wake produces inflow within the wake but negligible flow outside, 
and the velocity due to the trailing vorticity, as given by the Biot-Savart for- 
mula, is everywhere perpendicular to the wake and so does not affect the scalar 
product in (3.6). Due to the source and the bound vortex, the contribution 
v: to v, a t  the point with position vector r is given by 

The last term is the Biot-Savart velocity field of the bound vortex element. (It 
may be remarked that v: is not irrotational. To obtain the full irrotational field 
v1 the Biot-Savart velocity due to the trailing vorticity must also be included.) 
We thus have to satisfy the equation 

(a+P&b).vT = (a-P*b).v;. (3.8) 

Since K, is perpendicular to s, we may write 

where the unit vectors t, and n1 are given by (2.13). Then 

s , . ( K , x r )  = ( s l x K l ) . r  = (Kltn,-KIntl).r. 

Each side of (3.8) can now be expressed as a sum of multiples of r .  a, r .  b and 
r . (a x b). The coefficients must balance, which leads to the set of equations 

Q, - (cot a + /3* cosec a)  K,, = Q2 - (cot a - /3* cosec a)  K2t, (3.10) 

(3.11) 

(1+2,8*cosa+/3)*K1, = (1 -2 /3~cosa+@)~K2,  = &T, say. (3.12) 

These are the three extra relations which reduce the number of degrees of freedom 
in the flow to three. Using (2.19), equations (3.10) and (3.11) can be written as 

/3*Ql+ (coseca+/3*cota)K1, = -@Q2+ (coseca-p*cota)K,,, 

M-Ctcota+(Ho/Uo)Ktcoseca = 0 ,  

(Ho/Uo) Q - C, cosec a + (Ho/Uo) K,  cot a = 0 ,  

where Q and M are the total source and pole strengths at the origin, and Kt and 
C, are the t-components of the bound vortex strength and bound current strength. 
These may be combined into the single complex equation 

M + iC, = (Ho/Uo) eia (Q +iK,). (3.13) 

This is precisely the equation given by Hasimoto (1960) for his special cases of 
two-dimensional flow, where Q and Kt become the source strength per unit span 
and the circulation, and similarly for M and C,. 

0 the standard thin An interesting corollary of this equation is that for a 
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wing flow, in which the wake contains trailing vorticity but no ring vorticity 
(with its associated inflow along the wake and source flow outside) has no im- 
mediate magnetohydrodynamic analogue. Equation (3.13) shows that if Kt p 0, 
one at least of Q and M must be non-zero, and (2.18) now shows that both ring 
vorticity and ring current must be present in at least one wake. 

The total bound vortex strength in the plane of U, and H, is 

K1,nl+K2,n, = K*, say. 

Using (3.12) and (2.13) we obtain 

K* = T coseca( 1 - 2pcos 2a +,8z)-1((,8- 1) cos aa + (1 -/3 cos 2a) b). (3.14) 

Similarly, the bound current strength in this plane is 

C* = (H,/U,)Tcoseca(I - 2 P ~ o s 2 a + ~ ~ ) - ~ { ( P - ~ o s 2 a ) a +  (1 -p)cosab) .  

(3.15) 

For a = 0, (3.4) and (3.7) continue to apply, and we can deduce at once that 
(3.13) still holds. We may choose t so that K (and therefore also C) lies in the 
t-direction, so there is no need to introduce K* and C* in this case. 

4. Forces on the body 
In  steady flow the momentum inside any large fixed surface S enclosing the 

body remains constant. Consequently the flux of momentum out of S must be 
balanced by the total force exerted across 8 by the fluid outside due to fluid 
pressure and the Maxwell stresses, plus the reaction of the body on the fluid. 
Suppose that the force on the body is F, so that the reaction on the fluid is - F. 
Momentum conservation requires that 

F = - {pqq,+pn+~,uuH2n-,uHH,}dS. (4.1) IS 
The terms in the integrand represent respectively the effects of the momentum 
flux, the pressure p ,  the magnetic pressure +,uH2, and the Maxwell tension pH2 
along the magnetic lines of force. The unit outward normal to dS is n, and the 
suffix n denotes the component of a vector in the direction of n. As in non- 
conducting flow, viscous forces (which are zero outside the wakes) make a negli- 
gible contribution to the surface integral. 

We now write q = U,+v, H = H,+h, as in (2.6), and ignore squares of v 
and h. We also use the relations 

the last two being consequences of (2.3). We again assume that there is no 
physical source or magnetic pole at the body. Equation (4.1) becomes 

(pvU,,+(p-p,)n+,uh.H,n-,uhH,,)dS, (44 
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where po is the pressure at  infinity. Outside the wakes we have Bernoulli’s 
equation (3.2), which becomes 

P-Po = -pv.u,, (4.3) 

ignoring w2. Suppose that F = F,+F,, (4.4) 

where F, is the value of F obtained by using (4.3), and F, is the extra contribution 
due to (4.3) not being applicable in the wakes. Then from (4.2), 

F, = pU, x ss(n x v)dS-pH,  x (n x h)dS. 
ss 

(4.5) 

We may further split up the problem by writing 

where Fs is due to the source (and pole) at the origin, FB is due to the bound 
vortex (and current) at the origin, and F, is due to the trailing vortices (and 
currents). As remarked before, ring vorticity and current produce no effect in 
the main flow. 

If we take S as a sphere centre 0, we see at once from (4.5) that F, = 0,  since 
the corresponding v and h are parallel to n, and so the vector products in the 
integrands are zero. 

For F, consider each wake separately. For the s, wake, take S as the planes 
s1 = + A .  For each trailing element of the equivalent horse-shoe vortex (as in 
figure 2) ,  n x v, is in the plane of S, and if we sum over circular rings of S, centre 
the point a t  which the trailing element cuts S, we see by symmetry that the total 
contribution is zero. The same is true for h,, and also for the s, wake, on taking 
S as s, = + A .  Thus F, = 0. 

For F, the relevant velocity field is, from (3.7), v = (K x r)/471.r3. In  order not 
to be led into error through using the non-irrotational Biot-Savart field, we must 
be careful to use the same surfaces S as were used in discussing F,. Accordingly 
we write K = Kl+K, and consider the two parts separately. For K,, we take 
S as the surfaces s1 = + A ,  as before. If v1 is the corresponding velocity, 

n x v, = AK,/477r3 

FO = FS+F,+F,, (4.6) 

on each of s1 = + A ,  since n . K ,  = 0. For the first integral in (4.5) we write 
r = ( A 2 + ~ 2 ) * ,  d S  = Zrudu, and obtain as the contribution to F, 

ZpU, x K, Jrn iAu(A2 + u2)-% du = pU, x K,. 
0 

The initial factor 2 arises since there are equal contributions from the two 
surfaces s1 = + A .  Similar results hold for K, and for the bound currents C, 
and C,. Combining all these results, we have from (4.6) 

(4.7) 

In  the wakes (4.3) no longer applies, but on the other hand, as shown in 8 2 ,  
p+&uHz is constant across the wake. Consequently the contributions to F, 
from the second and third terms in the integrand in (4.1) or (4.2) cancel. Thus 

F, = F, = PU, x K-pHO x C. 
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where S, is the intersection of S with the wakes, and v and h now denote the 
longitudinal velocity and magnetic fields due to ring vorticity and current. 
Again we consider each wake separately. For convenience, take S so that S,  
cuts the wakes at right angles. In  the s, wake, for a =+ 0, h, = - (p/p)* V, from 
(2.19) and 

ISwv,dS = -QIsI .  

(The negative sign arises since a source in the main flow is accompanied by an 
equal inflow along the wake.) Consequently 

Fw,  = PWO, + (PIP)* HI,) &I 5, = P P O  + (PIP)% Ho) Q1 

= ~UoQi-iuHoMi, (4.9) 

(4.10) 

using (2.19). Similarly, F,, = pU,Q, -pH, M,, and adding these we obtain 

F, = pU, & - pH, M .  
When a = 0, (4.10) is an immediate consequence of (4.8). 

Combining these results, we have from (4.4) 

F = PU, x K -pH, x C +pU,Q -pH, M .  (4.11) 

It will be observed that the classical results (3.1) are recovered as a special case 
by putting H, = 0. 

The contributions to (4.11) due to &, M ,  K, and C, are all in the plane of U, 
and H,, while those due to K* and C* are perpendicular to this plane. Suppose 
that 

where the components X ,  Y ,  2 are in the directions of a, t, a x t respectively. 
(Thus 2 is the component perpendicular to U, in the plane of U, and H,.) Using 
(3.13), (4.11) gives 

X + i2 = pU,(Q + iK,) -pH, eia ( M  + iC,) 

F = ( X ,  Y , Z ) >  

= pU,(1-,4e2ia) (Q+iK,). (4.12) 

This again is identical in form with the formula derived by Hasimoto (1960) for 
his particular cases of two-dimensional flow. Also, using (3.14) and (3.15) in (4.11), 

Y = pU,T( 1 - 2p cos 2cr. +p”-’( - (1 -pcos 2a) -p(p- 00s 2a)) 

= -pU,T. (4.13) 

The expressions (4.12) and (4.13) for the force on the body are remarkably 
compact. Taken in conjunction with (3.13), (3.14) and (3.15), they describe the 
over-all effects on the body and on the velocity and magnetic fields in terms of 
three independent parameters, the same as in the non-conducting case. 

5. The electric field 
The electric field E was eliminated as early as equation (2.4) and has not had 

to be reintroduced. Now that the description of the velocity and magnetic fields 
has been completed, E can be obtained at once. In  the undisturbed flow, (2 .2)  
shows that there is a uniform electric field 

E, = -pU, x H, = pUoW,sinat. (5.1) 
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Taking the divergence of (2.2) and neglecting squares and products of per- 
turbations, we obtain 

V.E = - ,uV.(qxH) =,u(U,.j-H,.o).  (5.2) 

EV.E = pe, (5.3) 

The equation for the charge density pe is 

where e is the permittivity, and so (5.2) gives the electric charge distribution 
which modifies the basic field E,. 

Contributions to (5.2) arise only from terms associated with the two wakes. 
For a $; 0, (2.18) gives for the s, wake 

V.E, = ~ u ( ~ , + ( , u / ~ ) ~ H , ~ . j ,  
= , u ~ , ( l  + 2p3 cos a + ,814 s,. j,. (5.4) 

The ring current in the wake and the bound current at  the origin are each per- 
pendicular to s,, so only the trailing current contributes to (5.4). From (5.4) 
and (5.3), the trailing current doublet C, gives rise to an electric line doublet 
of strength 

Similarly, along the s, wake there is an electric line doublet 

D, = E,uU,( 1 + 2p4 cos a +p)* C,. 

D, = E/LU,( 1 - 2p4 cos a +p)4 C,. 

(5 .5 )  

(5.6) 

When a = 0 it  is again clear that only trailing current and vorticity affect 
(5.2). From (2.23) the strength D,, D, of the electric doublets in the twp wakes 
are found to be 

D,,, = (~Pu,/w ((7 + v) 5 [(Y - v12 + 4 ~ ~ 1 4 1  c,,,. (5.7) 

As in $2 ,  there is no agreement between the values for a = 0 given by (5.7), 
and the limiting values as a + 0 given by (5 .5 )  and (5.6), except when 7 = v. 
But in all cases the total electric field at large distances from the body is seen to 
consist of the uniform field E,, together with the fields due to semi-infinite line 
doublets along the two wakes. 
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